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Abstract. We calculate the Wigner distribution function for the Calogero-Sutherland system which consists
of harmonic and inverse-square interactions. The Wigner distribution function is separated out into two
parts corresponding to the relative and center-of-mass motions. A general expression for the relative Wigner
function is obtained in terms of the Laguerre polynomials by introducing a new identity between Hermite
and Laguerre polynomials.
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1 Introduction

Since the introduction of the Wigner function (WF) in
1932 for inclusion of quantum corrections to classical re-
sults [1], phase space representations of the quantum me-
chanics have been a focus of continuing interest and found
a wide range of applications [2]. In this formalism one de-
fines a distribution function W (q, p) of position q and mo-
mentum p in such a way that to every normalized state
vector ψ there corresponds a distribution function. In or-
der to define the same physical system,W should be a Her-
mitian form of ψ, and if W is integrated over p it should
give the proper probabilities of the different values of q
or vice versa. Since the WF is a probability distribution
function one expects, as a natural condition on W (q, p),
that it should be non-negative for all values of q and p:
W (q, p) ≥ 0. However, Wigner [3] proved that this result
is incompatible with the first two conditions and it is now
a common practice to work with a distribution function
taking negative values for certain q and p in the phase
space.

The quantum Calogero-Sutherland model (CSM) hav-
ing a quadratic confining q2 plus an inversely quadratic
1/q2 potentials [4] has applications in a wide variety of
different areas of many body physics, due to the con-
nection of its variants and itself directly with the hier-
archical fractional quantum Hall effect [5], free oscillators
on a circle [6], the spectrum of the Chern-Simons ma-
trix model [7], short range Dyson model [8], and Witten-
Dijkgraff-Verlinde equation [9]. Additionally, many works
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have also been realized to construct its N -fermion ver-
sion [10], W∞ algebra unification [11], shape invari-
ance [12], generalized statistics [13], statistical properties
of quantum quasi-degenaracy [14], equivalence to decou-
pled oscillators [15].

In addition to allowing one to analyze the dynam-
ics of quantum systems entirely in phase space and thus
to make comparison between their classical and quantum
evolutions, there is also experimental interest on the mea-
surements of WFs for certain quantum systems to probe
the predictions of quantum mechanics, since WF con-
tains complete quantum mechanical information as the
wave function or density matrix has. A number of experi-
ments have been reported where the measurement of WFs
carried out for both vacuum and quadrature-squeezed
states of light [16], molecular vibrational states [17], var-
ious quantum states of the motion of a harmonically
trapped atom [18], as well as for a massive particle wave
packet [19]. Of particular importance are the experiments
upon which the negatives in WFs corresponding to Fock
states [18] and a superposition of macroscopically sepa-
rated parts of matter field [19] have been observed. In this
regard, due to the fact that it is now possible to realize
new quantum mesoscopic devices such as quantum dots
and quantum antidots by various experimental techniques,
the CSM may serve as a model of two non-interacting
electrons with an individual quantum antidot confined in
a quantum wire or a stripe, where the repulsive inverse-
square quantum antidot potential acts as a scattering cen-
ter for electrons, or may be used as a one dimensional ex-
actly soluble band model or quantum dot arrays wherein
the coupling constant of the inverse-square potential of



398 The European Physical Journal D

the CSM is chosen as 0 ≥ g ≥ −1/2 in dimensionless
units, i.e., attractive [20,21]. Moreover, very recently, Li
et al. [22] have solved CSM with pseudo-angular momen-
tum operator method, and they showed that, by discussing
its several variants, the radical equations of three dimen-
sional isotropic oscillator and hydrogen-like atom in both
spherical and parabolic coordinates, one dimensional three
body problem and the s-state of Morse potential all re-
duces to CSM. Therefore, WFs of CSM may provide a
solid basis for the discussions of transport properties [23]
of the above mentioned nanostructures. With these moti-
vations, we study the WFs of CSM which has not only a
particular significance in itself, but also enables us to un-
derstand the phase space picture of its variants and itself
as well.

The WF for two particles is defined by

W (q1, q2; p1, p2) =
1

(π�)2

∫ +∞

−∞
dy1

∫ +∞

−∞
dy2

× Ψ̄∗ (q1 + y1, q2 + y2) Ψ̄ (q1 − y1, q2 − y2)
× exp [2i (p1y1 + p2y2) /�] . (1)

If we express the WF in terms of the center-of-mass and
relative coordinates through the relations

q1 + q2 = 2Q, q1 − q2 = q

p1 + p2 = 2P, p1 − p2 = p

y1 + y2 = 2Y, y1 − y2 = y

then, provided that the interparticle potential depends on
the relative coordinates, equation (1) becomes

W (q,Q; p, P ) =
1

(π�)2

∫ +∞

−∞
dy
∫ +∞

−∞
dY

× Ψ∗ (q + y)Ψ∗ (Q+ Y )Ψ (q − y)Ψ(Q− Y )
× exp [i (4PY + py) /�] , (2)

since the solution of the corresponding Schrödinger equa-
tion can be represented by a product of two functions,
one for the center-of-mass and other for the relative
coordinates. Then, equation (2) can be separated as the
center-of-mass and relative WFs, W (q, p) and W (Q,P ),
respectively. We can therefore define the WFs for the
center-of-mass and relative motions in the form

W (Q,P ) =
1
π�

∫ +∞

−∞
dY Ψ∗ (Q+ Y )Ψ (Q− Y )

× exp [4iPY/�] , (3)

W (q, p) =
1
π�

∫ +∞

−∞
dyΨ∗ (q + y)Ψ (q − y)

× exp [ipy/�] , (4)

respectively. It should be noted that, while Ψ̄ ’s in equa-
tion (1) represent the two body wavefunctions, Ψ ’s in
equations (2–4) are single particle wave functions. Now,
it is possible to present a coupled system of linear par-
tial differential equations corresponding to the above de-
fined WF, which requires the direct computation without

solving the wave functions [24]. The Wigner representa-
tion is very convenient for studying quantum systems with
Hamiltonians that include quadratic coordinates and mo-
menta, since in this case the Wigner distribution function
represents a good approximate description of the dynam-
ics involved. The method, however, is not easy to handle
when the potential contains higher order powers of coor-
dinates, since this case comprises a differential equation
for the Wigner function with terms as much as the num-
ber of the order. In recent years there has been a number
of works to calculate the WF for various type of poten-
tials: infinite square well [25], a double well potential [26],
the Pösch-Teller potential [27], the Morse oscillator [28], a
quantum damped oscillator [29], the hydrogen atom [30],
the rotational motion of a spherical top [31] are notable
applications. A discrete WF for non-relativistic quantum
systems with one degree of freedom has been developed in
finite dimensional phase space and applied to a few simple
system [32].

The layout of this paper is as follows: in Section 2, we
discuss WFs for the center-of-mass and relative motions,
and obtain general expressions in terms of Laguerre poly-
nomials. In Section 3, we derive a new identity between
Hermite and Laguerre polynomials to obtain a compact
form for the WF of the relative part, and plot some of
them for a few states to give an idea on their phase space
behaviors.

2 Theory

The Hamiltonian describing two particles interacting pair-
wise by the Calogero-Sutherland potential is given by

H =
2∑

i=1

⎡
⎣− �

2

2m
∂2

∂q2i
+

1
2
mω2

•q
2
i +

1
2

2∑
j �=i

U (|qi − qj |)
⎤
⎦ ,
(5)

where the second term is the confining potential and

U (|qi − qj |) =
[
mω2

0 (qi − qj)
2 + 2g/ (qi − qj)

2
]
/2

simulates further interactions between two particles. If we
now use the above defined center-of-mass and relative co-
ordinates, then the relevant Schrödinger equation is sep-
arated out as a center-of-mass equation, which is a 1D
harmonic oscillator equation

[
− �

2

2M
d2

dQ2
+

1
2
Mω2

•Q
2

]
Ψ (Q) = EQΨ (Q) , (6)

and the Calogero-Sutherland system
[
− �

2

2µ
d2

dq2
+

1
2
µω2q2 +

g

q2

]
Ψ (q) = EqΨ (q) , (7)

where we have defined ω2 = ω2• + 2ω2
0 as a hybrid fre-

quency. In equations (6, 7),M and µ are total and reduced
masses, and are given by 2m and m/2, respectively.
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The Wigner function corresponding to the center-of-
mass motion defined by equation (3) through the solution
of equation (6) is well-known, and given by [2]

W�

(
Q, P̃

)
=

(−1)�

π�
exp

[
−Mω•Q2/� − P̃ 2/Mω•�

]

×L�

(
2Mω•

�
Q2 +

2P̃ 2

�Mω•

)
, (8)

where P̃ = 2P is used for the sake of comparison with
the results presented in the associated literature, and �
takes values 0, 1, 2, . . . Although it is possible to obtain
the WFs for the simple harmonic oscillator (Eq. (8)) in
various ways, for example, by using algebraic methods or
by solving ordinary differential equations of WF [33], the
WF corresponding to the relative motion resulting in the
CS system cannot be obtained by either methods. There-
fore, we are compelled to obtain the corresponding Wigner
function through solving equation (7). First, we make a
change of variable by z = (µω/�)1/2q, which transforms
equation (7) into

Ψ ′′ +
(

4n+ 2β + 2 − z2 +
1/4 − β2

z2

)
Ψ = 0, (9)

where the new parameters are given by

Eq = �ω (2n+ β + 1) , 1/4 − β2 = −2µg/�2

with n = 0, 1, 2, . . . and g ≥ −�
2/8µ. It should be

noted that these are the energy levels of one dimensional
isotropic harmonic oscillator with odd quantum numbers
shifted by an amount (β − 1/2)�ω. The solution to equa-
tion (9) can then be written [34] in terms of the Laguerre
polynomials

Ψn (q) = Cnb
α/2qα exp

[−bq2/2]Lα−1/2
n

(
bq2
)
, (10)

where α = β + 1/2, b = µω/� and the normalization con-
stant is given by Cn = b1/4 [n!/Γ (n+ α+ 1/2)]1/2. We
can now build the associated WFs for the relative motion
(RM) with the wave functions given by equation (10) ac-
cording to the definition of equation (4), which results in

Wnα (q, p̃) =
|Cn|2
π�

bα exp
[−bq2]

∫ +∞

−∞
dy
(
q2 − y2

)α

× exp
[−by2

]
L

α− 1
2

n

[
b (q + y)2

]

×Lα− 1
2

n

[
b (q − y)2

]
exp (2ip̃y/�) , (11)

where p = 2p̃ is used. If we use the binomial expansion of

(a+ d)α =
α∑

β=0

(
α
β

)
aα−βdβ ,

and series expansion of the Laguerre polynomials

Lk
n (x) =

n∑
m=0

(−1)m

m!

(
k + n
n−m

)
xm

then equation (11) is expressed in the form

Wnα (q, p̃) =
|Cn|2
π�

bα exp
[−bq2]

×
n∑
m

n∑
r

(−1)m+r

m!r!

(
α− 1

2 + n
n−m

)(
α− 1

2 + n
n− r

)
bm+r

×
α∑

β=0

(−1)β (αβ ) q2α−2β
2m∑
µ=0

(
2m
µ

)
q2m−µ

×
2r∑

ρ=o

(−1)ρ
(

2r
ρ

)
q2r−ρ F2β+µ+ρ (p̃) , (12)

where F2β+µ+ρ (p̃) is given by the following integral

F2β+µ+ρ (p̃) =
∫ +∞

−∞
dy y2β+µ+ρ exp

[−by2 + 2ip̃y/�
]
.

(13)
It is easy to show that this last integral can be expressed
in terms of the Hermite polynomial as follows:

Fn (p̃) = b−(n+1)/2

√
π

2n (−i)n exp
[−p̃2/b�2

]
Hn

(
p̃

�
√
b

)
,

(14)
with n = 2β + µ + ρ [35]. Furthermore, the use of the
relation [35] Hn (u) = (−1)neu2

∂n
ue

−u2
for the Hermite

polynomials reduces the above expression to

Fn (p̃) =
√
π

b

(
− i�

2
∂p̃

)n

e−p̃2/b�
2
, (15)

where ∂p̃ represents the differentiation with respect to p̃.
Hence, the WFs for the RM becomes, with these new def-
initions,

Wnα (q, p̃) =
|Cn|2√
πb�

exp
[−bq2]

×
n∑

m=0

(−1)m

m!

(
α− 1

2 + n
n−m

)
bm
(
q − i�

2
∂p̃

)2m

×
n∑

r=0

(−1)n

n!

(
α− 1

2 + n
n− r

)
br
(
q +

i�

2
∂p̃

)2r

× bα
(
q2 +

�
2

4
∂2

p̃

)α

e−p̃2/b�
2
. (16)

By using once again series expansion of the Laguerre poly-
nomials, it is possible to express equation (16) in an im-
plicit form as well

Wnα (q, p) =
n!√

π�Γ (n+ α+ 1/2)
e−µωq2/�

× Lα−1/2
n

[µω
�

(q − i�∂p)
2
]
Lα−1/2

n

[µω
�

(q + i�∂p)
2
]

×
[µω

�

(
q2 + �

2∂2
p

)]α
e−p2/4µω�. (17)
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If we now define a unit of dimension by l =
√

�/mω•
with µ = m/2 and M = 2m, then we can make positions
and momenta dimensionless by Q = Q/l, P = lP/�, q =
q/l, p = lp/�, and frequency by ω = ω/ω•. Hence, the
relevant WFs for the center-of-mass and relative motions,
equations (8) and (17), become

W̃�

(
Q,P

)
= (−1)� exp

[
−2Q

2 − 2P
2
]
L�

(
4Q

2
+ 4P

2
)
,

(18)
and

W̃nα (q, p) =
√
πn!

Γ (n+ α+ 1/2)
e−ωq2/2

× Lα−1/2
n

[
ω

2
(q − i∂p)

2

]
Lα−1/2

n

[
ω

2
(q + i∂p)

2

]

×
[
ω

2
(
q2 + ∂2

p

)]α

e−p2/2ω, (19)

respectively, where we have denoted π�W�

(
Q,P

)
and

π�Wnα (q, p) as W̃�

(
Q,P

)
and W̃nα (q, p), respectively.

3 Results and discussion

Figures 1 and 2 show, respectively, the WFs W̃02 and W̃03

for the relative motion given by equation (19) as func-
tions of dimensionless position q = q/l and momentum
p = lp/� for two different dimensionless frequency values,
ω = ω/ω• = 1 and 3. Contour plots showing the projec-
tions of the relevant WF onto (q, p) plane are also shown
in these figures. In other words, each contour is a slice
of given WF in the (q, p) plane. It should be noted that,
while ω = 1 corresponds to the case ω0 = 0, ω = 3 corre-
sponds to switch on ω0 to the value ω0 = 1, which causes
localization in q [36,37]. In addition to this pattern, delo-
calization in p is observed in both figures. In other words,
in Figures 1b and 2b, there the dips and peaks of WFs in
q are shifted towards the smaller q values compared with
those in Figures 1a and 2a, whereas those of WFs in p are
shifted towards higher p values.

Having obtained a general expression for the WF of
two interacting particles we now distinguish between the
cases g = 0 and g �= 0, and deal with each case separately.
This allows us to verify the consistency of the WFs ob-
tained above with those found in the literature. In order
to see this, we need to set g = 0 first. In this case, we
have only the solutions with β = +1/2 and −1/2 cor-
responding to α = 1 and 0, respectively. We obtain, for
n = 0, 1, 2, 3, . . .

W̃n1 (q, p) = −
√
π (2n+ 1)!

n!22n+1Γ (n+ 3/2)
exp

(
−ωq

2

2
− p2

2ω

)

×L2n+1

(
ωq2 +

p2

ω

)
(20)

which are the relative WFs corresponding to eigenvalues
of the harmonic oscillators with 2n + 1 eigenvalues. To

(a)

(b)

Fig. 1. Three dimensional plots of WF W̃02 for the relative
motion (Eq. (19)) as a function of dimensionless position q =
q/l and momentum p = lp/� for dimensionless frequency (a)
ω = ω/ω• = 1 and (b) ω = 3.

obtain equation (20), we have used the fact that every
power of q2 + ∂2

p commutes with Laguerre polynomials
with argument of q∓i∂p in equation (19), and the identity

√
ω

2
(q ∓ i∂p)L1/2

n

[
ω

2
(q ∓ i∂p)

2

]
=

(−1)n

22n+1n!
H2n+1

[√
ω

2
(q ∓ i∂p)

]
, (21)

and we have derived a new identity between Hermite and
Laguerre polynomials in the form of

Hn

(
u+

i

2
∂υ

)
Hn

(
u− i

2
∂υ

)
e−υ2

=

(−1)n2nn!Ln

[
2
(
u2 + υ2

)]
e−υ2

. (22)
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(a)

(b)

Fig. 2. Three dimensional plots of WF W̃03 for the relative
motion (Eq. (19)) as a function of dimensionless position q =
q/l and momentum p = lp/� for dimensionless frequency (a)
ω = ω/ω• = 1 and (b) ω = 3.

The proof of equation (22) can easily be done by using
standard relations among these polynomials. In case of
α = 0, we proceed as before by formally using equa-
tions (21) and (22) to give

W̃n0 (q, p) =
√
π (2n)!

n!22nΓ (n+ 1/2)
exp

(
−ωq

2

2
− p2

2ω

)

×L2n

(
ωq2 +

p2

ω

)
(23)

which are the relative WFs corresponding to eigenvalues
of the harmonic oscillators with 2n eigenvalues, again with
n = 0, 1, 2, 3, . . . A more general expression for these two
cases can be found by noticing that arrangement of the
coefficients in equations (20) and (23) leads to the pair of

equations

W̃n (q, p) =

⎧⎨
⎩

− exp
(
−ωq2

2 − p2

2ω

)
L2n+1

(
ωq2 + p2

ω

)
,

+ exp
(
−ωq2

2 − p2

2ω

)
L2n

(
ωq2 + p2

ω

)
,

or they may be combined into the form of

W̃n (q, p) = (−1)n exp
(
−ωq

2

2
− p2

2ω

)
Ln

(
ωq2 +

p2

ω

)
.

(24)
The WFs constructed from the products of equation (24)
with equation (18) define the WFs of two-noninteracting
particles confined in a harmonic well potential in one di-
mension, or alternatively, they define WFs of a particle
in a harmonic potential in two-space dimensions. When
g �= 0, which indicates that α would be greater than 1,
then the total WF becomes

W̃l,n

(
q, p;Q,P

)
= (−1)l exp

[
−2Q

2 − 2P
2
]

× Ll

(
4Q

2
+ 4P

2
) n!
Γ (n+ α+ 1/2)

e−ωq2/2

× Lα−1/2
n

[
ω

2
(q − i∂p)

2

]
Lα−1/2

n

[
ω

2
(q + i ∂p)

2

]

×
[
ω

2
(
q2 + ∂2

p

)]α

e−p2/2ω. (25)

Finally, by these considerations, we comment on W̃n(q, p)
given by equation (24), rather than equation (25), to bet-
ter visualize the phase space behaviors of WFs presented
in Figures 1 and 2, i.e., how the localization in q happens
when the strength of spatial confinement ω is increased.
The use of the asymptotic expansion of the Laguerre poly-
nomials for large order [38] yields equation (24) to take
form

W̃n(q, p) � (−1)n

√
π

[
(n+

1
2
)(ω q2 +

p2

ω
)
]−1/4

× cos

{
2
[
(n+

1
2
)(ω q2 +

p2

ω
)
]1/2

− π

4

}
, (26)

from which one can easily find out where the WF is zero
and where it takes negative values. For instance, equa-
tion (26) has zeros when

2
[
(n+

1
2
)(ω q2 +

p2

ω
)
]1/2

− π

4
= (k − 1

2
)π,

k = 0,±1,±2, . . . , (27)

which clarifies the above comment that the localization
in q appears as ω increases. Namely, the left hand side of
equation (27) can be rearranged, in dimensional units as
usual, to give

2H(q, p)
ω

=
π2

4(n+ 1
2 )

(
k − 1

4

)2

�. (28)
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In fact, this last expression is called the symplectic
area enclosed by an ellipse whose boundary is given by
H(q, p) = E = p2/(2m)+ω2q2/2 and its minimum value is
determined by the Gromov’s non-squeezing theorem, i.e.,
2H(q, p)/ω ≥ � [39]. Therefore, the projections of WFs
onto (q, p) plane are elliptic energy shells whose eccentric-
ity is given by e =

√
1 − (mω)2, and they are circles with

the frequency ω = 1/m.
In this paper, we introduced and solved the WFs of

one-dimensional two particle Calogero-Sutherland system
in which the particles obeying the Boltzman statistics in-
teract mutually by the sum of quadratic and inversely
quadratic pair potentials, and they are confined in an ex-
ternal harmonic potential as well. It is obvious that the
technique introduced here can easily be extended to find
explicit analytical expressions for WFs of 3-and N -body
counterpart of the problem. Namely, by using Jacobi co-
ordinates, after separating the center-of-mass coordinate,
one can easily construct the remaining part of WF with
N − 1 relative coordinates. Furthermore, due to the fact
that, with particular choices of the coupling constant g,
the radical equation of three dimensional isotropic oscil-
lator and of hydrogen-like atom in both spherical and
parabolic coordinates, one dimensional three body prob-
lem and the s-state of Morse potential [22] are all reduced
to Calogero-Sutherland system, the results obtained here
unify inherently the WFs of these quantum mechanical
problems.

As a final remark, we should point out that the at-
tractive interaction, i.e., 0 > g ≥ −�

2/8µ, is also present
in the CSM. Therefore, one can easily compare the phase
space behaviors of WFs of two different regimes as well.
In particular, it should be noted that a particular choice
of g, when 0 > g ≥ −�

2/8µ, yields one dimensional band
problem solved by Scarf [20,21]. This serves as a model
for one dimensional dot arrays, as also indicated in the
Introduction section.
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